Voltage-gated outward K currents in frog saccular hair cells.

نویسندگان

  • Luigi Catacuzzeno
  • Bernard Fioretti
  • Fabio Franciolini
چکیده

A biophysical analysis of the voltage-gated K (Kv) currents of frog saccular hair cells enzymatically isolated with bacterial protease VIII was carried out, and their contribution to the cell electrical response was addressed by a modeling approach. Based on steady-state and kinetic properties of inactivation, two distinct Kv currents were found: a fast inactivating IA and a delayed rectifier IDRK. IA exhibited a strongly hyperpolarized inactivation V(1/2) (-83 mV), a relatively rapid single exponential recovery from inactivation (taurec of approximately 100 ms at -100 mV), and fast activation and deactivation kinetics. IDRK showed instead a less-hyperpolarized inactivation V(1/2) (-48 mV), a slower, double-exponential recovery from inactivation (taurec1 approximately 490 ms and taurec2 approximately 4,960 ms at -100 mV), and slower activation and deactivation kinetics. Steady-state activation gave a V(1/2) and a k of -46.2 and 8.2 mV for IA and -48.3 and 4.2 mV for IDRK. Both currents were not appreciably blocked by bath application of 10 mM TEA, but were inhibited by 4-AP, with IDRK displaying a higher sensitivity. IDRK also showed a relatively low affinity to linopirdine, being half blocked at approximately 50 microM. Steady-state and kinetic properties of IDRK and IA were described by 2nd- and 3rd-order Hodgkin-Huxley models, respectively. The goodness of our quantitative description of the Kv currents was validated by including IA and IDRK in a theoretical model of saccular hair cell electrical activity and by comparing the simulated responses with those obtained experimentally. This thorough description of the IDRK and IA will contribute toward understanding the role of these currents in the electrical response on this preparation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of temperature on electrical resonance in leopard frog saccular hair cells.

Leopard frog saccular hair cells exhibit an electrical resonance in response to a depolarizing stimulus that has been proposed to contribute to the tuning properties of the frog sacculus by acting as an electrical band-pass filter. With the whole cell patch-clamp technique, we have investigated the effect of temperature on electrical resonances in isolated saccular hair cells, and we have descr...

متن کامل

Calcium currents in solitary hair cells isolated from frog crista ampullaris.

Some properties of Ca2+ currents in hair cells isolated from frog semicircular canals by enzymatic or mechanical treatment were studied by using the whole-cell configuration of the patch-clamp technique. After blocking the large outward K+ currents by substituting Cs+ for K+ and adding tetraethylammonium to the pipette filling solution, voltage- and time-dependent inward currents were clearly d...

متن کامل

Regional analysis of whole cell currents from hair cells of the turtle posterior crista.

The turtle posterior crista is made up of two hemicristae, each consisting of a central zone containing type I and type II hair cells and a surrounding peripheral zone containing only type II hair cells and extending from the planum semilunatum to the nonsensory torus. Afferents from various regions of a hemicrista differ in their discharge properties. To see if afferent diversity is related to...

متن کامل

Mechanoelectrical transduction and adaptation in hair cells of the mouse utricle, a low-frequency vestibular organ.

Hair cells of inner ear organs sensitive to frequencies above 10 Hz adapt to maintained hair bundle deflections at rates that reduce their responses to lower frequencies. Mammalian vestibular organs detect head movements at frequencies well below 10 Hz. We asked whether hair cells of the mouse utricle adapt, and if so, whether the adaptation was similar to that in higher frequency organs such a...

متن کامل

Existence of a delayed rectifier K+ current in the membrane of human embryonic stem cel

Introduction: Human embryonic stem cells (hESCs) are pluripotent cells that can proliferate and differentiate to many cell types. Their electrophysiological properties have not yet been chracterzed. In this study, the passive properties (such as resting membrane potential, input resistance and capacitance) and the contribution of delayed rectifier K+ channel currents to the membrane conducta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 90 6  شماره 

صفحات  -

تاریخ انتشار 2003